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Centrifugal waves 

By 0. M. PHILLIPS 
Mechanical Engineering Department, The Johns Hopkine University, 

Baltimore, Maryland 

(Received 10 June, 1959) 

When a hollow circular cylinder with its axis horizontal is partially filled with 
water and rotated rapidly about its axis, an almost rigid-body motion results with 
an interior free surface. The motion is analysed assuming small perturbations to 
a rigid rotation, and a criterion is found for the stability of the motion. This is 
confirmed experimentally under varying conditions of water depth and angular 
velocity of the cylinder. The modes of oscillation (centrifugal waves) of the free 
surface are examined and a frequency equation deduced. Two particular modes 
are considered in detail, and satisfactory agreement is found with the frequencies 
observed. 

1. Introduction 
The term ‘centrifugal waves’ is a convenient one to describe the wave motion 

on the free surface of a rapidly rotating liquid, in which the equilibrium pressure 
distribution is determined primarily by the radial accelerations associated with 
the rotation. A simple apparatus in which the properties of these waves can be 
studied is shown in figure 1. A hollow circular transparent plastic cylinder C was 
supported by roller bearings B and mounted with its axis horizontal. The ends of 
the cylinder were closed except for a small hole H on the axis at one end through 
which water could be introduced slowly. The other end was coupled to a variable- 
speed motor, M .  

When the cylinder is partially filled with water and rotated sufficiently rapidly, 
the water moves with almost rigid-body rotation about a central air core. The 
existence of the gravity field perpendicular to the axis and the presence of the 
free surface together impose a steady (time independent) perturbation on the 
truly rigid body motion, while for certain combinations of angular velocity and 
depth of water for a cylinder of given length, a variety of surface wave patterns 
are observed at the interface. These are most pronounced when the depth of water 
and speed of rotation are such that the half wavelength in the axial direction is an 
integral submultiple of the cylinder length. One particularly striking series of 
wave patterns is such that the free surface inside the rapidly rotating cylinder is 
stationary with respect to the observer. In  another series, the wave crests are 
parallel to the cylinder axis and move circumferentially relative to the cylinder 
wall. 

The wave frequencies and angular velocity of the cylinder were measured with 
a stroboscopic light. In  a typical experiment, the empty cylinder was rotated at 
a constant angular velocity and water was introduced very slowly by means of 
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a thin tube passing through the hole H .  As the depth of water increased slowly, 
the various modes of oscillation would build up and die away in turn, until, when 
the depth approached some critical value, the flow would become unstable and 
collapse suddenly. 

C 

‘B 
FIQURE 1. The apparatus for observing centrifugal waves. The hollow cylinder C is 
mounted on roller bearings B and driven by the motor M .  Water is introduced through the 
small axial hole H .  

In  the following sections, a theory is developed to describe the various motions 
that can occur. At various points in the analysis, comparisons can be made with 
observations obtained in this way. Some of these phenomena were first observed 
by Mr L. Schaaf and Mr R. Drake, and detailed measurements were made with 
the able assistance of Mr E. C. Crist and Mr D. Meredith. I am also grateful to 
Mr W. G. Rose for the discussions we have had about this work. 

2. The governing equations 
Consider the motion inside a rotating circular cylinder of radius a with its axis 

horizontal, partially filled with a liquid of small viscosity, and suppose that the 
angular velocity SZ of the cylinder is sufficiently large that the motion of the 
fluid is almost a rigid-body rotation with a central air core. 

FIGURE 2. Geometry of the free surface. 
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cylindrical polar co-ordinates, 
The momentum and continuity equations for an inviscid fluid* are, expressed in 

i a  l a v  c ? ~  
r ar r ae a2 
-- (ru)+--+- = 0, 

(2.1) 

where u, v, w represent the velocity components in the directions r ,  8, z, re- 
spectively, and the direction 0 = 0 is taken vertically downwards. If gravity were 
absent, the steady motion would be that of a rigid body, with 

u = 0, v = Qr, w = 0, 

p = frpQ2(r2-c2a2), 

where a is the radius of the cylinder and ca (0 < c < 1) the radius of the cylindrical 
free surface. The presence of gravity, acting in a direction perpendicular to the 
axis, results in a steady perturbation on this rigid-body motion, and, as pointed 
out already, there may be in addition oscillatory wave disturbances. Therefore, 
writing 

7 = ria, 

let 

i 
24 = Qa(u,+u,), 

= Qa(7+w1+v2), 

w = Qawz, 

(2.3) 

where u1 and v1 represent the steady (time-independent) disturbances, and 
u,, v,, w2 the oscillating (wave) disturbances whose time average is zero. In  the 
presence of gravity, the pressure distribution given by (2.2) is modified by a 
hydrostatic contribution and by the accompanying displacement of the free 
surface over which the pressure is constant. We therefore define quantities 
Pl? P2 by 

p = SpQ2a2{(q2 - c2) + p l  +p2} + p g q  cos 8, (2.4) 

where p 1  is time independent and the (time) mean value of p ,  is zero. 
If the disturbances are sufficiently small (the nature of this requirement is 

discussed in more detail later), the dimensionless velocities ul, up, . . . , w, are small 
compared with 7 (c < 7 < 1) and when (2.3) and (2.4) are substituted into the 

* The neglect of the viscous terms in (2. I) is discussed in 8 3 below. 
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equations of motion (%I), squares and products of the perturbations can be neg- 

au, a l a  
a7 ae 
av, a i a  
ar ae 

lected. Thus 
-+- (ul+u2)-2(V~+v,) = --- 2 a7 (p1+p,), 

-+ 2(Ul+ u2) + - (v1+ v2) = - q (Pl +pz), 

where r = dt and f: = z/a. 

are obtained by taking the time average of (2 .5 ) :  
The equations that describe the steady disturbance to the rigid-body motion 

The equations for the wave motion are now found by subtracting the set (2.6) 
from the respective members of (2.5), giving 

We now turn to consideration of the boundary conditions to be imposed on the 
sets of equations (2.6) and (2.7). Clearly, at the cylinder wall, both the steady and 
oscillatory parts of the normal velocity components must vanish, so that 

u1 = u2 = 0 when 7 = 1. (2.8) 
Let the free surface, at which the pressure is constant, be given by 

(2.9) 
where 8, and 8, represent dimensionless steady and oscillatory displacements, 
which are assumed to be small compared with the mean free-surface radius c. 
Substituting into (2.4) and taking the free-surface pressure as zero, we have 

7 = c -t- &l(O) + u e ,  5 , 4 ,  

(2.10) 9 
d2a 

2c - cos e + ~ ~ ( 6 ,  + 8,) +pl +p, = 0, 
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on 7 = c, correct to the first order in the infinitesimal wave displacements and to 
the first order in q/Wa, the magnitude of the steady disturbance. Taking the mean 
and oscillating parts of (2.10), we obtain 

9 
P a  

p1 + 2cs, = - 2c - cos e 
for the steady disturbance, and 

p, + 2cs, = 0 

(2.11) 

(2.12) 

for the wave motion, both when 7 = c. The neglect of squares and products of 
order (g/Qza)2 in these boundary conditions is consistent with the neglect of the 
non-linear disturbance terms in the dynamical equations. 

Finally, we have the kinematic boundary condition 

at the free surface, and since 
D a Q r a  
F a t  r ae -+----, 

we have 

and 

as1 

as, as, u 2 = a 7 + -  ae 

u1= (2.13) 

(2.14) 

at 7 = c, for the steady and wave motions, respectively. 

3. The steady disturbance 
It is convenient to collect together from the previous section the equations 

describing the steady disturbance to the rigid body motion, set up by the gravity 
field. They are 

with the boundary conditions 
u1 = 0 at 7 = 1, 

a t  7 = c. i 
The form of these equations suggests the substitutions 

6, = acose, 

p ,  = P(7)  case, 

= $(7) cos e, 
u1 = ~ ( 7 )  sin 8, 
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so that 

and 

x-24 = -*PI,\ 

(3.5) I x = O  at 7 = 1 ,  

g 
n2a 

x + A = O  a t  ? = c ,  

P + 2 c A = - 2 c -  a t  7 = c ,  

where the primes denote differentiation with respect to 7. 
Substituting for g5 from the third equation of (3.4) into the other two, we have 

Thus 

where A and B are constants to be determined. The first equation of (3.5) gives 

(3.6) 
B = - A ,  SO that 

. .  
and from (3.4) it  follows that 

(3.7) 

The boundary conditions at 7 = c enable us to determine the constant A and the 

c2 9 
2 Q2a' 

surface displacement A : 
A =--- 

The steady gravity-induced disturbance is thus given by 

(3.9) 

(3.10) 

(3.11) 
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The vorticity of this perturbation is of course zero, since the basic flow has 
constant vorticity. A property of these solutions that is at first sight curious is 
that the central air core has its axis below the axis of the rotating cylinder. 
However, it can be seen readily that as the fluid moves from points 6’ = 0 to 6’ = n-, 
it  acquires potential energy at the expense of its kinetic energy. The circum- 
ferential velocity when 0 = n- is therefore less than when 0 = 0, 80 that by 
continuity the thickness of the layer must be greater. 

The solutions (3.11) show that at  the cylinder surface 7 = 1, the circum- 
ferential velocity perturbation vl = c2g cos 0/SZ2a. If the liquid has viscosity v, 
a boundary layer is formed of thickness (2v/SZ)4, since SZ is the frequency of the 
perturbation velocity at a fixed point on the rotating cylinder. In order that the 
above solutions be valid throughout most of the region occupied by the fluid, it  is 
necessary that (2V/SZ)+ < a( 1 - c), 

i.e. (3.12) 

or that the Reynolds number of the layer be large. This condition is invalidated 
when 1 - c is very small, and the fluid lies in a thin film inside the cylindrical 
wall. 

In  the plane 0 = n-, the gravitational and centrifugal pressure gradients are of 
opposite sign, and a necessary condition for the stability of the flow is that the 
net radial pressure gradient be positive. In  the absence of wave disturbances, we 
have from (2.4) and (3.11) 

so that a necessary condition for stability is that 

(””) = tpnBa2(211-,, $ + ( 2 + C 2 )  > 0, 
211 #=n r3c2 I1 

for c + 8, < 7 < 1. This condition is strictest when 

1 9  7 = c+6,  = c---(l-c2),  
2 Q2a 

from (3.11), so that we require 

approximately, or 

(3.13) 

(3.14) 

This condition states that if the flow is to be stable, the value of Q2a/g cannot 
be less than 3/c (except when 1 - c is very small, and the flow is viscosity con- 
trolled). However, instability and collapse of the flow may occur at  values of 
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R2a/g greater than 3/c if wave motions of large amplitude are present in addition. 
This lower limit is illustrated in figure 3, together with some experimental points 
giving measured values of c for collapse at various values of the parameter 
Rza/g. It will be seen that the observational points all lie above the theoretical 
curve. As mentioned in the introduction, these points were obtained by 
holding the parameter Q2n/g constant, and decreasing G from unity by the slow 
addition of water through the hole H .  Values of c at collapse were closest to the 
theoretical value when W a / g  was such that, for the cylinder of given length, there 
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FIGURE 3. The stability condition. 

were no Iarge-amplitude wave modes present as c approached its critical value. 
If there were such waves present, as was usually the case, the collapse occurred 
prematurely at a larger value of c, because of a momentary unbalance induced by 
the waves. Near c = 1, it is likely that non-linear effects may be significant, since 
for marginal stability the parameter Q2a/g is approximately 3, which is not an 
order of magnitude greater than unity. 

It is perhaps worth noting that for a certain region above the curve shown in 
figure 3, the flow is metastable in the sense that for given values of LPafg and 
c two types of flow are possible. The first is the almost rigid motion discussed 
here, and the second a ‘collapsed’ motion in which the water lies at the bottom of 
the cylinder and moves in a closed eddy with an almost plane, though tilted, free 
surface. To restore the almost rigid body motion after collapse, a considerably 
higher angular velocity of the cylinder is required. 
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4. The wave motion 

here from 0 2 .  The momentum and continuity equations are 
The equations to  be satisfied by the wave motion are conveniently rewritten 

The appropriate boundary conditions are 

u2 = 0 when 7 = 1, 

p , + 2 c s ,  = 0 1 
as, as, when 7 = C. 

ar ae u, = - +- , 

Consider disturbances periodic in time and in the 8- and [-directions: 

where 1 is an integer and no confusion need arise over the use of the same func- 
tional symbols, x ,  $, etc., that represented corresponding quantities in the 
analysis for the steady disturbance on the rigid-body motion. 

With these substitutions, the governing equations become 

i ( n + I ) x - 2 $  = -&P’,) 

with 

i ( n + l ) $ + 2 x  = - - P ,  
27 i1 I 

il 
T X + x ’ + - $ + i k $  7 = 0, 

1 
x = O  a t  7 = 1 ,  

P+2cA=O a t  ~ = c ,  

x = i ( n + l ) A  at 7 = c.  

(4 .4)  

(4.5) 
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The equations (4.4) can be solved by substituting for 4, x and $in the continuity 
equation, giving a single equation for P, namely 

where 

P"+-P'+  72-- P = 0, 
'I ( 9 

k2[4 - (n + 1)2] y2 = 
(n+l)2  * 

Equation (4.6) is Bessel's equation and since Eis integral, the solution is expressible 
(if y2 > 0) in terms of Bessel functions of the first and second kind, 

P('I) = a4(r'I) +BY;(YT), (4.8) 
where a and B are constants whose ratio is to be determined. 

The remainder of the solution is obtained readily. From the third of equa- 
tions (4.4), 

(4.9) 

while from the first two of this set, 

(4.12) 

and similar expressions for the Y-functions. 

from (4.11) we have immediately 
The ratio a/P is determined by the first of the boundary conditions (4.5), and 

(4.13) 

The second and third members of the set (4.5) determine the frequency equation 
n = n(k ,  I, c). Eliminating A, 

a = - .  ( 2  + n + 1 )  L ( Y )  + (2 - n - 0 Y;+l(Y) 
P ( 2  +n+ l)4- l (Y)  + ( 2  -n-4 Jl+l(Y) * 

P = O  at ~ = c ,  (4.14) i(n + I) 
x + z c  

and substitution from the expressions above gives, after some algebra, 
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Of the many possible wave motions, one of the most striking is the one specified 
by 1 = 1, n = 0. The free surface is stationary with respect to the observer and 
stands like a sinusoidally flexed transparent cylinder within the rapidly rotating 
outer case. With 1 = 1, n = 0 (4.15) reduces to 

{3Y,(Y) + Y,(Y))J,(YC) - {3JO(Y) + JdY))  U Y C )  = 0, (4.16) 

where now y = k 4 3 .  The allowable axial wave-numbers k for this wave mode are 
given by the roots of this equation and are illustrated as functions of c in figure 4. 
It is evident that k is multiple valued; an infinite number of wave-numbers k with 

I I d 

10 

I 

C 

FIGURE 4. Allowable wave-numbers for stationary waves (m = 0) as a function of c. 

n = 0 being possible for a given value of c.  These waves were excited in the 
apparatus only when the wavelength was an integral submultiple of twice the 
cylinder length, so that only a few distinct modes of oscillation were observed. 
The agreement between the wave-numbers of the modes that were excited and 
the theoretical predictions are quite good, points being found near the two lowest 
branches of figure 4. For small values of c we have seen that the flow becomes 
unstable even for large values of R2a/g, and the minimum attainable value of c for 
almost rigid body rotation in our apparatus was a little less than 0.4. 

If y2 < 0, a similar frequency equation can be derived without difficulty, 
involving Bessel functions of purely imaginary argument. If y = 0, that is, if 
either k = 0 or ( l+n)2 = 4, the above solutions become degenerate. The case 
k = 0 is more interesting physically since it represents a two-dimensional motion 
in which the crests are parallel to the cylinder axis and move in a circumferential 
direction. 
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When y = 0, equation (4.6) reduces to 

1 12 
P”+-P’--P == 0, 

7 T 2  
whence P(7)  = A$ + By-‘, (4.17) 

where A and B are constants. If k = 0, we have immediately from (4.4), 

$(7) = 0 

The first boundary condition (4.5) requires 

A 2-n-1 
B 2 + n + l ’  
- = -____ 

so that 

(4.18) 

(4.19) 

(4.20) 

The frequency equation follows from the boundary conditions a t  ?,I = c. From 

whence, on substitution from (4.16), 

n2(1+c2z)+2n{(l+1)-(1-Z)c22}+1{(1+Z)-(1-E)c21} = 0. (4.21) 

This frequency equation can be obtained alternatively from (4.15) by a 
limiting process as y --f 0, ( I  + n)2 + 4. The roots of (4.21) are illustrated in figure 5 
as functions of c for the case 1 = 1, which was the mode excited most readily in our 
apparatus. For a given value of c there are two possible wave frequencies, one 
greater and one less than the rotation frequency of the cylinder. The slow waves 
were observed most commonly, and their frequencies agreed well with the 
theoretical curve. The occurrence of these waves was often a prelude to premature 
collapse. On two occasions only were the high-frequency waves observed and 
both times they occurred in combination with one of the other modes. Pre- 
sumably the high-frequency waves are more heavily damped by viscosity, and 
this may account for the relative difficulty in generating them. 

It is interesting to notice that when c = 1--E, E < 1, equation (4.21) gives 
approximately 

n = -1(1+&, 
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where the relative signs of 1 and n determine the direction of wave motion. In 
a frame of reference rotating with the cylinder, 

n = TI&,  

or in dimensional form, with frequency Q = Rn and layer depth d = €a, 

‘r 1 

c 

FIQURE 6. The frequency of circumferential waves with one node. 

Since the wavelength h = 27ra/l, and the wave velocity V = cA/2n, we have 

V = ( Q2a)4 da. (4.22) 

This is seen to be exactly analogous to the velocity of gravity waves under the 
long wave approximation ( A  9 d) ,  where 

V = gad&. 

The gravitational acceleration g is here replaced by the radial acceleration Q2a 

in the rotating system. 
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